Physica 20D (1986) 444-446
North-Holland, Amsterdam

PLASMA DIFFUSION ACROSS A MAGNETIC FIELD
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Using a simple model of a slowly diffusing plasma across a strong magnetic field, it is demonstrated that plasma mass and
energy evolves from an initially given density and temperature distribution into isothermal state with a self-similar diffusion

profile that depends only on its initial mass and energy.

1. Introduction and statement of the problem

In this letter we study the asymptotic behavior
of a plasma slowly diffusing across a strong mag-
netic field [1--2]. Without confining walls, or walls
that are adequately remote, an initially generated
plasma with finite support is free to diffuse into
the vacuum. The evolution of the solution of the
prototype equations for the diffusion of mass and
energy across the magnetic field is dominated by a
diagonal diffusion tensor. In past studies, the de-
coupled problems for the diffusion of particles in
an (essentially) isotherinal plasma [3-4] or the
diffusion of heat in a stationary plasma [5-8] have
been analyzed. The present study addresses the
more complex situation where both processes are
coupled [8].

The equations of motion we will study are

P = (Dlpx)x’ (la)
Pr=(PD2Tx)x+(TD1px)x’ xE("'OO,CO),
(1b)

where D, =d,p*T#, i=1 or 2, P is the plasma
pressure, p is the density and T is the tempera-
ture. The ionic and electron temperatures are as-
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sumed to be equal and P = pT. The choice of the
a’s and B’s depends on the details of the particu-
lar physical process being modelled. The initial
data is specified over a bounded domain

p(x,0)=p0(x), P(x90)=P0(x)’
x € (—xq, +x4).

(2)
The divergence form of egs. (1) guarantee that no
additional energy or mass is added (or subtracted)
after the process is initialized.

2. Analysis

Eq. (1) is an idealized model in slab geometry,
where energy, mass and radiation transport are
neglected. Yet, even in this physically idealized
system, regularity conditions that guarantee the
existence of smooth solutions are not known. In
this paper we extend previous results on a related
system of initial boundary value problems to un-
derstand the (dynamics) of the prototype equa-
tions (1). There is often a large gap between what
constitutes a reasonable physical model and one
amenable to mathematical analysis. In this spirit
the presented model is intended to serve as a
building block toward our understanding of
plasma transport rather than its immediate appli-
cability to a given plasma situation.
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To present our main result, we first construct a
selfsimilar solution of egs. (1). For the initial con-
ditions
po(x)=M05(x), Po(x)=E08(x), (3)

where

M0=on po(x)dx, Eo"‘fxo Py(x)dx, (4)

— X0 —Xg

and 8(x) is the Dirac measure. The appropriate
solution satisfies

P(x,1)=p(x,1)Eo/My,

p(x,0) = F(§) /12, ®
where

¢ =x/[(Mgn)' )] )
and

£@) = (87 - 82) /(2 + )], (7)
if ¢ <{, and f(§)=0 otherwise.

X

Note that the position of the diffusing front {,
depends only on the total mass M, of the system
and a,. It follows from (5) that the self-similar
solutions represent an isothermally diffusing
plasma.

Out of the many group invariant solutions, the
one presented has been selected out because of its
key role in the late-time description of problem
(1). That is, the leading term in the asymptotic
behavior of a solution with an initial mass M, and
energy E, is given by (5). Thus, its far-field behav-
ior is almost independent of the structure in the
initial data. This behavior is a natural generaliza-
tion of single equation case [9].

Since we have not yet obtained a rigorous proof
of the attractive nature of the self-similar solution,
we performed a series of numerical experiments to
confirm this property

The isothermal nature of the solution dominates
so strongly that the specific form of the second
diffusion coefficient is of little importance. A typical
transit to the self-similar regime which occurs quite
quickly is shown in fig. 1. After the initial tran-
sients, the temperature equilibrates and eq. (1b)
merely duplicates eq. (1a). Hence, the solution
dynamics are almost identical to the single diffu-
sion equation case.
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Fig. 1. The initial transient solution for ¢; = L=t ap=1 fp=lduy=1, and dgy = 5.
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3. Closing remarks

For a single equation it has been shown [9] that
if a finite mass M, is distributed over the whole
space, then the thermal diffusion as given by

p(x)T,=[A(T)].,

leads to the isothermalization of the medium if 4
satisfies 4(0)=0, 4(0)20 and A(T)>0 for
T> 0. That is,

T(x,t) > 7;5]:” p(x)T(x,0)dx/M,.

As might be anticipated on the basis of physical
considerations, the diffusion of heat in a finite
mass medium results in isothermalization of the
medium irrespective of how the mass is distrib-
uted.

Currently, we are studying the impact of radia-
tion on the dynamics of the system. In this case,
energy is not conserved. Also, it was recently
shown [10] that if an energy source is included
(and density is fixed to be constant) the asymp-
totic selfsimilar regime is very different from the
energy conserving case. Hence expect radiation to
have an important impact on the plasma dy-
namics.
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